Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes

نویسندگان

  • Shengxiang Yang
  • Shouyong Jiang
  • Yong Jiang
چکیده

It has been increasingly reported that the multiobjective optimization evolutionary algorithm based on decomposition (MOEA/D) is promising for handling multiobjective optimization problems (MOPs). MOEA/D employs scalarizing functions to convert an MOP into a number of single-objective subproblems. Among them, penalty boundary intersection (PBI) is one of the most popular decomposition approaches and has been widely adopted for dealing with MOPs. However, the original PBI uses a constant penalty value for all subproblems and has difficulties in achieving a good distribution and coverage of the Pareto front for some problems. In this paper, we investigate the influence of the penalty factor on PBI, and suggest two new penalty schemes, i.e., adaptive penalty scheme (APS) and subproblem-based penalty scheme (SPS), to enhance the spread of Pareto optimal solutions. The new penalty schemes are examined on several complex MOPs, showing that PBI with the use of them is able to provide a better approximation of the Pareto front than the original one. The SPS is further integrated into two recently developed MOEA/D variants to help balance the population diversity and convergence. Experimental results show that it can significantly enhance the algorithm’s performance. Shengxiang Yang School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China; and Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K. E-mail: [email protected] Shouyong Jiang Centre for Computational Intelligence (CCI), School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K. E-mail: [email protected] Yong Jiang School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Penalty Scheme for Multiobjective Evolutionary Algorithm Based on Decomposition

The multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem into a number of sing-objective subproblems and solves them collaboratively. Since its introduction, MOEA/D has gained increasing research interest and has become a benchmark for validating new designed algorithms. Despite that, some recent studies have revealed that MOEA/D...

متن کامل

A New Threshold Based Penalty Function Embedded MOEA/D

Recently, we proposed a new threshold based penalty function. The threshold dynamically controls the penalty to infeasible solutions. This paper implants the two different forms of the proposed penalty function in the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to solve constrained multiobjective optimization problems. This led to a new algorithm, denoted by ...

متن کامل

Threshold Based Penalty Functions for Constrained Multiobjective Optimization

This paper compares the performance of our recently proposed threshold based penalty function against its dynamic and adaptive variants. These penalty functions are incorporated in the update and replacement scheme of the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to solve constrained multiobjective optimization problems (CMOPs). As a result, the capability ...

متن کامل

Performance of a Constrained Version of MOEA/D on CTP-series Test Instances

Constrained multiobjective optimization arises in many real-life applications, and is therefore gaining a constantly growing attention of the researchers. Constraint handling techniques differ in the way infeasible solutions are evolved in the evolutionary process along with their feasible counterparts. Our recently proposed threshold based penalty function gives a chance of evolution to infeas...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2017